Strictly localizable measures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly positive measures on Boolean algebras

We investigate strictly positive finitely additive measures on Boolean algebras and strictly positive Radon measures on compact zerodimensional spaces. The motivation is to find a combinatorial characterisation of Boolean algebras which carry a strictly positive finitely additive finite measure with some additional properties, such as separability or nonatomicity. A possible consistent characte...

متن کامل

Weakly left localizable rings

A new class of rings, the class of weakly left localizable rings, is introduced. A ring R is called weakly left localizable if each non-nilpotent element of R is invertible in some left localization SR of the ring R. Explicit criteria are given for a ring to be a weakly left localizable ring provided the ring has only finitely many maximal left denominator sets (eg, this is the case if a ring h...

متن کامل

Causal and localizable quantum operations

David Beckman,* Daniel Gottesman, , M. A. Nielsen, and John Preskill Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 Computer Science Division, EECS, University of California, Berkeley, California 94720 Center for Quantum Computer Technology, University of Queensland, Queensland...

متن کامل

The Vector Measures Whose Range Is Strictly Convex

Let μ be a measure on a measure space (X,Λ) with values in Rn and f be the density of μ with respect to its total variation. We show that the range R(μ) = {μ(E) : E ∈ Λ} of μ is strictly convex if and only if the determinant det[f(x1), . . . , f(xn)] is non zero a.e. on Xn. We apply the result to a class of measures containing those that are generated by Chebyshev systems. 1991 Mathematics Subj...

متن کامل

Chebyshev Measures and the Vector Measures Whose Range Is Strictly Convex

In this paper we resume the most important results that we obtained in our papers [1,2,5,6,7] concerning a broad class of measures that we defined in dealing with a bang– bang control problem. Let M be the σ−algebra of the Lebesgue measurable subsets of [0, 1] and μ : M → R be a non–atomic vector measure. A well known Theorem of Lyapunov (see [11]) states that the range of μ, defined by R(μ) = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1982

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000019668